The dropout approach developed by Hinton has been widely employed in deep learnings to prevent the deep neural network from overfitting, as shown in https://statcompute.wordpress.com/2017/01/02/dropout-regularization-in-deep-neural-networks. In the paper http://proceedings.mlr.press/v38/korlakaivinayak15.pdf, the dropout can also be used to address the overfitting in boosting tree ensembles, e.g. MART, caused by the so-called “over-specialization”. In particular, while first few …