A geometric interpretation is developed for so-called reconciliation methodologies used to forecast time series that adhere to known linear constraints. In particular, a general framework is established that nests many existing popular reconciliation methods within the class of projections. This interpretation facilitates the derivation of novel theoretical results. First, reconciliation via projection is guaranteed to improve forecast accuracy with respect to a class of loss functions based on a generalised distance metric.<img src=“http://feeds.feedburner.com/~r/ProfessorRobJHyndman/~4/cKQpz